
Continuity and Differentiability 
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 and  g(x) = x + 5  are not identical because f(5) is undefined but g(5) = 10 is well-defined. 
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to remove the discontinuity. 
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 There are sign changes as  x  goes from  1+ to 2-  and from  2+ to 3- .   Also,  x  is  continuous  in   

(1, 2)  and  (2, 3),  therefore  f(x) = 0  has a solution between  1 and 2 , and another between  2 and 3 . 
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,   and  f(k) = 0, 

 therefore  f(x)  is continuous at  x = k . 
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4. The graph on the right shows that f(x) assumes every value between  

 0  and  1  once and only once as x increases from  0  to  1 . 

 Also,  the graph of  y = f(x)  and  y = f-1 (x)  are identical. 

 The discontinuities of  f(x)  are  x = 0,  x = 0.5  and  x = 1. 

 

5. 

(a)  f(x) is not continuous 

 and not differentiable 

 at  x = 0  for any 

 value of  a. 
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(b)  f(x) is not continuous 

 and not differentiable 

 at  x = 0  for any 

 value of  a ≠ 0. 

 It is continuous and 

 differentiable at   

 x = 0  if   a = 0. 
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6. Since   xsin
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 Also,  f(0) = 0.  

 ∴ f(x)  is continuous at x = 0. 

 The graph of  g(x) = 
x
1

cosxsin , x ≠ 0  is shown on the right. 
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7. Let  g(x) = f(x) – x .  Since  y = f(x)  and  y = x  are continuous functions from  [a, b]  to  [a, b] , 

therefore  g(x)  is continuous from  [-(b – a), b – a].  Since the range of  f(x)  assumes values of  [a, b],  

f(a) ≥ a , f(b) ≤ b.  If  f(a) = a  or  f(b) = b, the result follows easily by putting  x0 = a  or  x0 = b.  So we 

assumes that  f(a) > a  and  f(b) < b .  

 ∴ g(a) = f(a) – a > 0   and   g(x2) = f(b) – b < 0  and there is a sign change. 

 ∴ ∃x0  s.t.  g(x0) = f(x0) – x0 = 0  or  f(x0) = x0 . 

  

8. f  is both continuous and differentiable at  x = 0. 
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 The graph on the right shows the situation. 
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9. If  x2 > 1,  then  as  n →∞ , xn →∞ .   )x()x(f
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 In general,  φ(x)  is not continuous on  R  since  [ ])1(g)1(f
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 φ(x)  is continuous on  R  if  f(1) = g(1)  and  f(-1) = g(-1) 
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 Let  g(x) = sec x + csc x = 
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 ∴ f(x)  is continuous at  x = 0. 
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   ∴ f(x)  is not continuous at  x = 0, but it is continuous at  x = 1/2. 
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   ∴ f(x)  is not continuous at  x = 0. 
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   ∴ f(x)  is also not continuous at  x = π. 
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12. (a) 
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 y = f0 (x)  y = f1(x) 

 Two blue lines : y = ±x 

 y = f2(x) 

 Two blue lines : y = ±x2  
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   ∴ f1  and  f2  are continuous at x = 0. 
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   ∴ f(x) is continuous at  x = 0 
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  ∴ f’(x) is continuous at  x = 0. 
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